Validation of the Mesoscopic Theories and Their Application to Computing Concentration Dependent Diffusivities
نویسندگان
چکیده
Despite numerous molecular simulation studies on diffusion of small molecules through nanoporous films and on surfaces, most simulations have been limited to equilibrium conditions and relatively short time and length scales. Currently, there is a lack of a suitable computational framework which links molecular scale information with diffusion over larger scales. Here we employ a recently derived mesoscopic theory, which is exact in the limit of an infinite range potential, to model diffusion by a hopping mechanism through nanoporous films or on surfaces. Oneand two-dimensional lattice gradient continuous time Monte Carlo simulations are compared to solutions of mesoscopic models for various finite range potentials and microscopic diffusion dynamics. The latter are solved using finite difference and spectral methods. We have found that the mesoscopic models quantitatively describe diffusion even for relatively shortrange potentials, enabling comparison of model predictions to experimental data, due to a Large Deviation Principle. It is shown that the accuracy of mesoscopic theories for a finite range potential improves with increasing system dimensionality. We have found that parameterization of a concentration dependent diffusion coefficient depends on various parameters in a complex way and can be multiple-valued. The implications of these results for modeling diffusion through membranes are also discussed. • Corresponding author.
منابع مشابه
Mesoscopic Simulation of Forced Convective Heat Transfer of Carreau-Yasuda Fluid Flow over an Inclined Square: Temperature-dependent Viscosity
In the current study, non-Newtonian flow pattern and heat transfer in an enclosure containing a tilted square are examined. In order to numerically simulate the problem, the mesoscopic lattice Boltzmann method is utilized. The non-Newtonian Carreau-Yasuda model is employed. It is able to adequately handle the shear-thinning case. The simulation results of flow and heat transfer have been ...
متن کاملMaxwell-Stefan Diffusivities and Velocity Cross-Correlations in Dilute Ternary Systems
The Maxwell-Stefan (MS) approach is commonly used for describing mass transport by diffusion in gases and liquids since it correctly accounts for the chemical potential gradient as driving force. It is well known that MS diffusivities are concentration dependent which should be taken into account in practical applications. Unfortunately, it is difficult to obtain MS diffusivities both from expe...
متن کاملFault Tolerant DNA Computing Based on Digital Microfluidic Biochips
Historically, DNA molecules have been known as the building blocks of life, later on in 1994, Leonard Adelman introduced a technique to utilize DNA molecules for a new kind of computation. According to the massive parallelism, huge storage capacity and the ability of using the DNA molecules inside the living tissue, this type of computation is applied in many application areas such as me...
متن کاملApplication of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملApplication of statistical techniques and artificial neural network to estimate force from sEMG signals
This paper presents an application of design of experiments techniques to determine the optimized parameters of artificial neural network (ANN), which are used to estimate force from Electromyogram (sEMG) signals. The accuracy of ANN model is highly dependent on the network parameters settings. There are plenty of algorithms that are used to obtain the optimal ANN setting. However, to the best ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001